
PHYSICAL REVIEW E 67, 046214 ~2003!
Dynamics of many-particle fragmentation in a cellular automaton model
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A three-dimensional cellular automaton model developed by the authors to deal with the dynamics of
N-body interactions has been adapted to investigate the head-on collision of two identical bound clusters of
particles, and the ensuing process of fragmentation. The range of impact energies is chosen low enough, to
secure that a compound bound cluster can be formed. The model is devised to simulate the laboratory set-up
of fragmentation experiments as monitored by 4p detectors. The particles interact via a Lennard-Jones poten-
tial. At low impact energies the numerical experiments following the dynamics of the individual particles
indicate a phase of energy sharing among all the particles of the compound cluster. Fragments of all sizes are
then found to evaporate from the latter cluster. The cluster sizes, measured in our setup by simulated 4p
detectors, conform to a power law of exponent'2.6. In an attempt to duplicate the laboratory caloric curves
related, in particular, to nuclear fragmentation processes, we introduce several temperature parameters~kinetic
temperature of nucleons, kinetic temperature of fragments, reaction equilibrium temperatures!. Theoretical
caloric curves are then constructed for those temperature parameters, we regard as physically most relevant.
Our results show that different temperature definitions generate different curve patterns, indicating that the
fragmentation system remains far from thermodynamic equilibrium. The pattern of the laboratory caloric curve
for Au-Au collision experiments as derived from a recent analysis@NuPECC Report, 1997~unpublished!# is
reproduced qualitatively by our reaction temperatures.

DOI: 10.1103/PhysRevE.67.046214 PACS number~s!: 05.45.2a, 25.70.2z, 87.18.Bb
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I. INTRODUCTION

The currently favored theoretical approach of investig
ing many-particle fragmentation consists in applying stati
cal mechanics to the excited compound cluster. The pro
dure relies on the assumption that the collection of partic
or compound cluster, originating from the two colliding clu
ters reaches a state of thermodynamic equilibrium. The p
erties of this compound cluster can then be described t
modynamically, in terms of a small number of glob
parameters, namely, the total number of particlesA, possibly
the total charge numberZ, the total available energyE ~re-
garded as measured in the center-of-mass system!, the total
volumeV occupied by the particles, and possibly the area
the surfaceS enclosing this volume~See Ref.@1# for a recent
review of the theoretical approaches in the nuclear field;
Refs. @2–8# for experiments and results on molecules a
clusters of ions!. In this paper, we shall describe a less
strictive theoretical framework applicable to a multiple fra
mentation process of arbitrary nature~nuclear, atomic, or
molecular!. For our specific illustrations, the relevant orde
of magnitude of the global parameters have been chose
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capture the particular nuclear case.
A few comments on the related laboratory experime

are therefore in order. The empirical results are collec
essentially through the following experimental procedure
target nucleus (AT ,ZT) is bombarded with a high-energ
beam of incident nuclei (AI ,ZI) generated by an accelerato
A series of detector setups~such as ALADIN, CHIMERA,
EOS, FOPI, INDRA, LASSA, or MINIBALL!, ideally uni-
formly distributed over a sphere centred on the target nuc
and thereby securing a 4p coverage, identify the charge an
mass of the collisional fragments as well as their kine
energies.

Experiments of this nature were spearheaded in the 19
@9–11#. In Ref. @9# the target was a Kr or Xe ion; the acce
erated incident particles consisted of a beam of protons
energy in the range 80–350 MeV. The detectors isola
nuclear fragments in theA range 12<A<31. The yield
Y(A,Z) was found to be consistent with an expression of
form A2t times a Boltzmann factor@9# depending on a tem
perature parameter. The exponents evaluated experimen
weret52.64 ~Xe! and 2.65~Kr!. Qualitatively, the outcome
of these experiments was compared with the thermodyna
transition from a liquid phase~original target heated by the
infalling beam of protons! to a state of formation of droplet
of all sizes~fragment distribution measured by the detecto!
taking place at a critical-point temperatureTc . In fact, for
the latter transition a power law in the sizes of the droplet
©2003 The American Physical Society14-1
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known to hold, of exponentt52.33. This result is derived in
the context of the mean field theory@12#. Similar fragmen-
tation experiments were described in Refs.@10,11#, in which
the target was an Ag, Kr, Xe, or U ion; the incident particl
were protons or carbon ions. Again fragments were dete
~here in theZ range 3<Z<22), which obeyed an approxi
mate power law.

The seemingly canonical interpretation of these earlie
well as of the more recent intermediate-mass ion-ion co
sion experiments~for instance, the197Au-197Au fragmenta-
tion reported in Refs.@13,14#! regards the fragmentation pro
cess as the formal analog of a liquid-gas phase trans
occurring at a transition temperatureTc . At lower tempera-
tures,T,Tc , the nuclear system is a mixture of individu
nucleons and fragments~liquid phase!; at higher tempera-
tures T.Tc all fragments dissolve into a gas of nucleo
~gas phase!.

This interpretation of an observed fragmentation proc
~of any nature! as a thermodynamic phase transition may
helpful in providing a qualitative picture for the outcome
the collision experiments. However, it should be clear tha
many-body fragmentation process induced by violent co
sion cannot be regarded as a proper thermodynamic equ
rium phenomenon. Prior to the collision, both the target cl
ter, and the incident cluster, are in a stable inter
equilibrium state. The two clusters are characterized glob
by two sets of ~extensive! thermodynamic variables
(Aq ,Zq ,Eq ,Vq ,Sq), q5T,I . The energiesEq are measured
in the center-of-mass~c.m.! system of ionsT and I, respec-
tively. The stability of the equilibrium of each cluster re
quires a zero surface pressure. At the moment of the incip
collision theT and I clusters merge into a single clusterC,
the compound clusterC ~counterpart of the compoun
nucleusC in the sense of Bohr and Wheeler@15#!. The ex-
tensive thermodynamic variables are then essentially
sums of the extensive variables of the componentsT and I,
AC5AT1AI , etc., except for the difference in the evaluati
of the energy. The energy ofC, EC , is to be measured in th
c.m. frame of the compound system, so that we haveEC
5ET1EI1Eimp ; the extra energy componentEimp is the
impact energy~global kinetic energy of theT and I in c.m.
of C).

Since the impact energy is a free parameter, the sur
pressure ofC, the initial merger ofT andI, will not vanish, in
general, and hence the compound cluster will not be i
state of thermal equilibrium. The surplus energy is expec
to create a pressure increase~positive surface pressure!,
which will force C globally to expand. This expansion ma
consist in a release of clusters of particles which ultimat
become independent fragments~as observed in the exper
ments!, leading in turn to a contraction of a central cor
Such a phenomenon of global expansion made up of an
panding outer envelope~together with a contracting inne
core! is familiar in gravitationally bound systems~spherical
clusters of stars; cf. the classic analysis by Lynden-Bell a
Wood @16#!. In the general fragmentation problem, the ce
tral remainderC8 is a new compound cluster, with fewe
particles, which keeps evaporating fragments, thereby tr
forming again into a smaller central clusterC9, as long as it
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has not reached a final equilibrium state. These comm
make it manifest thata priori the distribution of fragments a
measured by the laboratory detectors is not directly relate
a statistical equilibrium state of a central clusterC; it is
rather the system’s nonequilibrium state that causes
evaporation of the fragments. However, provided that
central cluster evolves slowly enough, the component p
ticles may have time to reach an approximate statistical e
librium. The latter alternative is envisaged in gravitation
systems as well. The distribution of the clusters that eva
rate at a given timet is then expected to correspond to
chemical reaction equilibrium, or a dissociation equilibriu
at the temperature characterizing the central cluster at timt.
On the other hand, it is clear that this situation can hold o
if the impact energy remains low enough. At higher impa
energies the target will be essentially transparent to the
ticles of the incident cluster.

The simplest statistical models bypass the concep
question of whether or not a statistical equilibrium holds
the fragmentation process. In these models, the system
particles is enclosed in an energetically insulated box of
nite volumeVB ; the collection of interacting particles is the
fully specified by three independent thermodynamic para
etersVB , AC , andEC ~total energy! which are given at the
outset. Such a system is necessarily due to the relaxa
towards a thermodynamic equilibrium. In the speci
nuclear context, detailed classical molecular dynam
~CMD! calculations have indeed demonstrated directly
existence of a statistical equilibrium state, from which t
thermodynamic properties of the system can be recove
@17,18#. Moreover, the distribution of the fragments with siz
can be evaluated in the thermal equilibrium state. Sim
thermodynamic equilibrium results have also been derive
the framework of cellular automaton~CA! numerical experi-
ments~in two dimensional~2D! @19# and three dimensiona
~3D! @20#!. However, the connection between these, as w
as other theoretical models so far proposed@1# on the one
hand, and the real,a priori far from equilibrium laboratory
experiments on the other hand, remains entirely unclear.

In this paper, we pursue the goal of setting up a theoret
framework capable of closely simulating the arrangemen
the actual laboratory experiments. To this end we have gi
the following.

~1! We follow in the first place the dynamics of the coll
sion ~as in the case of CMD calculations! without relying on
an assumption of a thermodynamic equilibrium.

~2! Next we analyze the collection of fragments whic
have arrived at a certain distancedD from the collision site
where they can be regarded as independent. The fragm
distribution is estimated at that particular level. Our proc
dure of evaluation of the theoretical distribution thus co
trasts with the conventional statistical methods which ha
been applied by previous authors, including ourselves@18–
20#. It conforms instead essentially to the laboratory readin
as given by an array of detectors located at a distancedD
from the collision site.

~3! We introduce and compute explicitly a variety of fo
mal temperature parameters, namely, kinetic temperature
sociated with the gas of particles and the gas of fragme
4-2
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DYNAMICS OF MANY-PARTICLE FRAGMENTATION IN . . . PHYSICAL REVIEW E67, 046214 ~2003!
and reaction temperatures related to the distribution of
fragments. If the system were in a state of genuine ther
dynamic equilibrium, in particular, during the initial stage
the collision when the two colliding clusters merge into
single compound cluster, then a true thermodynamic te
perature would exist. Under this condition the formal te
perature parameters would all be equal to the true temp
ture. Provided only that there are experimental procedu
replicating the conditions of the theoretical definitions
these formal temperature parameters, the latter continu
provide a useful global characterization of the syste
whether or not a thermodynamic equilibrium state is re
ized: An acceptable theory must then be capable of dupli
ing the experimentally available values of these formal
rameters.

The question of the temperatures is analyzed in gre
detail in Sec. V. The dynamical calculations~Sec. IV! are
carried out in the context of the cellular automaton mo
developed by the authors and discussed in Ref.@19# and its
3D extension Ref.@20#. A major difference between the nu
merical experiments of Ref.@20# and the experiments of th
present work resides in the fact that the system of compo
particles was confined to a finite box, while, in principle, t
system of particles in our present analysis evolves in a
tually infinite lattice space.

The detailed CA experiments we report on, refer to
nuclear fragmentation involving collisions between identi
ions ~cf. the 197Au-197Au collision of ALADIN, @13#!. We
treat these collisions as being head on. In a future work,
plan to extend our model to deal with collisions of nonze
impact parameter.

II. THE CA MODEL

The CA framework adapted to the simulation of the cla
sical dynamics of interacting particles is discussed in R
@19#, for the specialized nuclear context; the particles
nucleons, and we consider low enough energies. We indi
here only the particular features of this model when app
to the collisional dynamics we are concerned with, and re
the typical orders of magnitude of the model parameters

A. Geometry of lattice space: Particle kinematics

Our CA universeU is a cubic lattice ofL3 cells, of toroi-
dal topology ~periodic boundaries!, with a typical sizeL
5127. A lattice cell is identified by a position vectorr of
integer Cartesian coordinatesr5(x,y,z) with x,y,z taking
the values2(L21)/2, 2(L21)/211, . . . , 21,0,1, . . . ,
(L21)/221, (L21)/2. An individual cubic cell has a sid
l chosen of the order of magnitude of the range of
nuclear forces ('2 fm). The time stepDt is of the order of
the collision time of nucleons in a bound nucleus
('10223 s). Time intervals are measured by an integet
~number of time steps counted from the beginning of
experiment!.

The real nucleon is simulated by a particle of massm; this
particle is either at rest~symbolized by the zero vectore0);
or in a state of motion with a single absolute value of t
velocity
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Accordingly, in our framework the allowed states of motio
of a particle arev56vei , whereei represents the unit vecto
along the lattice axisi 5x,y,z. A CA particlea then exists in
one among seven possible dynamic statesva50, vex ,
2vex , vey , 2vey , or vez , 2vez ; the momentum of this
particle is denoted bypa(5mva). As in Ref.@19#, we do not
take account of the charge of the nucleons.

Our CA particles obey an exclusion principle, in the sen
that a cell is not allowed to contain more than one particle
the same state of motion. Accordingly, the maximum dens
of our nuclear matter is seven particles per cell.

B. Particle interactions and dynamics

To simulate the interactions of a given nucleona with the
rest of the nucleons of our system we choose an ‘‘interac
neighborhood’’ of cellr containing nucleona, Nint(r ). This
neighborhood is the collection of cells made up of the cen
cell r , the w56 cells which have common facesf, the e
512 cells which have common edgese, and then58 cells
which have common verticesv with the ‘‘central’’ cell r .
Nucleona in cell r interacts with any nucleon in a cellr 8 if
and only if r 8PNint(r ).

The pair interaction energy between a particle in celr
and a particle in cellr 8, Vpair(r ,r 8), is represented by a ste
potential:Vpair(r ,r 8)5Vf if both cells have a common face
Vpair(r ,r 8)5Ve andVpair(r ,r 8)5Vv , if they have a common
edge, or a common vertex, respectively. For a pair of p
ticles in the same cellr , we adopt a potential of the form
Vpair(r ,r ;p)5Vo1(p21)DV; the pair parameterp takes ac-
count of the effect that the interaction energy between a
of particles in the same cell depends on the number of
ferent pairs present in the cell: If there are three particles,
hence three pairs, the first pair has an energyVo , the second
pair has an energyVo1DV, and the third pair has an energ
Vo12DV. The total potential in cellr is then the sum of the
pair potentials due to all particles in the interaction neighb
hoodNint(r ).

In order to minimize the number of free parameters of o
model, we have setVf [ Vo ~equal to the interaction energ
of a single pair in a cell!, andVe[Vv[V1. We are then left
with three independent energy parameters specifying
pair-interaction potential. The orders of magnitude adop
for the latter areVo523.0 MeV andV1520.3 MeV; DV
511.0 MeV. The precise values are adjusted to obtain
timal agreement with the observations, in particular, to
cure the experimental mean binding energy per nucleon
28 MeV in an intermediate-mass nucleus. The value ofDV
has been estimated by requiring that two and three parti
in a cell form a stable bound configuration; a larger num
of particles per cell leads to an unstable configuration.

Due to the discrete nature of the allowed CA states
motion, a particle suffers a change of momentum wh
obeys Newton’s law of motion in a statistical sense on
Two or more particles in a same cell undergo a scatter
which satisfies linear momentum conservation. The com
4-3
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LEJEUNE, PERDANG, AND RICHERT PHYSICAL REVIEW E67, 046214 ~2003!
tational details of the treatment of the transitions among
particle states of motion are given in Ref.@19#.

C. Fragmentation clusters and cluster configurations

A major aim of our simulation consists in constructing t
distribution law of the fragmentation clusters as actually r
istered by real laboratory detectors, in the form of the nu
ber of fragmentsN against sizea ~and at fixed timet), N
5N(a,t). In our experiments the ‘‘size’’ of a cluster is un
derstood as the number of particles in the cluster. The
ticles are indiscernible, so that any permutation among th
which does not alter the occupation of the individual ce
does not produce a new cluster.

A fragmentation cluster of sizea of our CA context is
eventually identified with a fragment of the laborato
nuclear fragmentation process. It simulates a nucleus c
taining a5A nucleons. The experimental counterpart of o
theoretical distributionN(a,t) that ignores the charge of th
fragments, is then the distribution of the isobars as resul
from the laboratory fragmentation process.

The precise specification of what we understand by
‘‘cluster’’ of size a that takes due account of the interactio
included in our model is given in the Appendix. For th
purposes of computing reaction temperatures, we nee
evaluate the number of distinct configurations~‘‘multiplici-
ties’’! of the different cluster-geometries compatible with
cluster of specified size. This question is also dealt within
Appendix.

III. THE SETUP OF THE NUMERICAL EXPERIMENTS

All of our experiments are carried out in the c.m. refe
ence frame whose origin coincides with cell (0,0,0).

A. Initial configuration

The initial conditions for a dynamic run are as follow
We simulate two nuclei, referred to as the ‘‘incident nucleu
I and the ‘‘target’’T, by two identical clusters~in the sense of
our definition! located in the half latticex,0 and x.0,
respectively. The centres of mass of the clustersI andT are
required to lie on thex axis. The mirror symmetry demand
that we haver I5(2xM ,0,0) andrT5(1xM ,0,0), respec-
tively. The number of particles~and mass, in units of the
nucleon massm) of each cluster isAT5AI5A5150.

Initially, we assign each cluster cell a single particle,
that the initial volumes of the clusters areV5Al3. The
shapes of these clusters are chosen to approximate de
packed spheres. This geometry leads to a radius-mass
tion of the standard type

R5S 3

4p D 1/3

lA1/3. ~2!

Overall consistency with the empiricalR-A relation then re-
quiresl'1.9 fm. The value, we have adopted for our mod
is l51.95 fm, which produces the matter density of a r
nucleus of massA5150. At time t50 the two clusters are
just in contact~Fig. 1!.
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B. Initial motion

Dynamically, all particles of each initial cluster,I andT,
are in ordered motion. In the c.m. frame ofT1I , any particle
of the target cluster has a velocityvT52vex , while the ve-
locity of any particle in the incident cluster isvI52vT5
1vex . The ordered microscopic motion accounts for the i
tial macroscopic motion of the two clusters along thex axis.
The linear momentum of the global systemT1I is zero in
this frame. The available impact energy is

Eimp52AK, K5
1

2
mv2. ~3!

This energy is transformed into excitation energy of the co
pound cluster; it leads eventually to the breakup of the lat
~As in the traditional statistical models, we ignore he
particle-creation processes, in particular, pion formatio!
The actual collision occurs at time stept51. Prior to the
collision the model describes two clustersT andI in uniform
motion in the c.m. frame, with opposite linear momentapT
52Amvex andpI51Amvex52pT . The velocities of the
two clusters are opposite, of absolute value

uvTu5uvI u5v. ~4!

C. The cluster detectors

In the laboratory experiments the detectors, which id
tify and count the fragments, and measure their kinetic en
gies, are ideally distributed isotropically around the collisi
center. We achieve an acceptable approximation to isotr
respecting the lattice symmetry of our CA environment
placing our theoretical counting devices on the six faces~CA
lattice planes! of a cube of size 2dD11 centred at the origin

FIG. 1. Initial spatial configuration (t50) for head-on collision
of two identical nuclei,T, I, of mass 150. Direction of propagation
x axis.T and I separated by empty layer of cellsx50.
4-4
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DYNAMICS OF MANY-PARTICLE FRAGMENTATION IN . . . PHYSICAL REVIEW E67, 046214 ~2003!
of the lattice ~limiting planes defined byx56dD ; y5
6dD ; z56dD). In conformity with the laboratory experi
ments, the distancedD must be chosen macroscopical
large. The minimum requirement is thatdD exceeds the dis
tancedint over which the fragments interact~freeze-out ra-
dius!. For our typical cell sizel and for initial clusters of
150 nuclei each moving along thex–axis test runs indicate
thatdint,x'dint,y'dint,z'20. In our numerical experiments
we have chosendD as large as computationally possib
(dD'50 for our CA universe of sizeL5127).

IV. FRAGMENT IDENTIFICATION
AND COUNTING ALGORITHM

In models of statistical equilibrium, in which the frag
ments are confined to a fixed finite volumeVB , the cluster
identification and count can be carried out with a stand
algorithm that consists in scanning the whole box availa
to the fragments@21#. However, in the real laboratory exper
ment the detectors are not uniformly distributed over a v
ume, so that the standard algorithm does not duplicate
experimental procedure. The fragment counting method,
have setup in our simulation is devised to reproduce the p
ciple of the laboratory counting procedure.

We isolate the ‘‘new’’ clusters,DN(a;t;x1), which
‘‘pierce’’ face x51dD ~our x1 counter! of the cube at time
step t. The total number of clusters of sizea, N(a;t;x1),
which have been traced by counterx1 up to stept, is then the
sum of all new clusters identified from time step 1 up to tim
stept. We have

N~a;t;x1!5DN~a;t;x1!1N~a;t21;x1!5DN~a;t;x1!

1DN~a;t21;x1!1•••1DN~a;1;x1!. ~5!

The identification at the other countersx2, ~face x5
2dD); y1, y2, ~faces y56dD); z1, z2, ~faces z5
6dD), follows the same scheme. The total number of
distinct clustersN(a;t) traced up to timet is the sum over
the measurements of all six detectors.

The relative distribution of the fragments,P(a), probabil-
ity of a fragment of sizea, is given by

P~a!5 lim
t→`

N~a;t !

N~ t !
with N~ t ![ (

a51

2A

N~a;t !. ~6!

Finally, if we repeat the same simulation a large number
of times, we have

^P~a!&5

(
c51

r

N(c)~a;t !

(
c51

r

N(c)~ t !

5

(
c51

r

N(c)~ t !P(c)~a!

(
c51

r

N(c)~ t !

. ~6a!

whereN(c)(t) is the total number of fragments of all size
N(c)(a;t) is the fragment distribution, andP(c)(a) is the
relative fragment distribution in thecth experiment. If the
numberr of experiments is chosen large enough, a stable
well-defined distribution is expected to emerge.
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To find ^P(a)&, we have developed a straighforward a
gorithm for the identification of fragmentation clusters
sizea which enter the planex51dD at stept. The algorithm
exploits the property that since a free fragment propaga
with speedv, DN represents the number of fragmentati
clusters which intersect the planex51dD , but which do not
intersect the planex51dD11.

To the extent that our CA model incorporates an acce
able approximation to the physics of the fragmentation p
cess, the relative fragment distribution as derived from
simulations should duplicate the laboratory distributi
P( lab)(a) as measured by real detectors. In fact, conside
laboratory run of total durationtexp, operating under station
ary conditions. We then have a constant flux of infallin
particles colliding with a flux of target particles. Under typ
cal operating conditions these collision processes are bin
collisions ~each individual collision process occurs indepe
dently of the other collision processes!. Collision c therefore
produces in the array of detectors a distribution given by
~6!. If r (texp) is the total number of collisions which occu
over the whole run of the experiment, then the detect
register the following relative fragment distribution:

P( lab)~a!5

(
c51

r (texp)

N(c)~a;t !

(
c51

r (texp)

N(c)~ t !

5

(
c51

r (texp)

N(c)~ t !P( lab,c)~a!

(
c51

r (texp)

N(c)~ t !

.

~6b!

The notations adopted in these expressions are essentiall
same as in the theoretical case@N(c)(a;t), N(c)(t), fragment
numbers in collisionc; P( lab,c)(a), relative fragment distri-
bution of thecth collision; P( lab)(a), final average relative
experimental distribution of the fragments#.

V. DYNAMIC RESULTS

The evolution of the particles of the two colliding cluste
is followed with our CA program over a total time interva
tmax not exceeding (L21)2(dint1dD) ~about 70 in our ex-
periments!. The order of this time interval is fixed by th
observation that it is the shortest time it takes an individ
particle, or a cluster, ejected in the collision, to migra
through the available CA lattice, to be reflected on t
boundary of the lattice universe, and to be sent back t
detector plane. For timest.tmax a reflected fragment could
collide with outflowing fragments; this would violate ou
assumption of noninteraction of the fragments at distan
exceedingdint .

We begin with a discussion of a first physically realis
effect.

~i! At the collision site, we observe a central concentrat
of nucleons~a compound nucleus! of sizeAC(t). This con-
centration progressively loses individual particles as well
fragments. The sequence of frames~a–d! exhibited in Fig. 2
and corresponding to an impact energy per nucleonEimp /A
53.75 MeV, illustrates this situation in greater detail. Fram
~a! (t520) indicates that besides isolated particles leav
the center, two large fragments were symmetrically ejec
4-5
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FIG. 2. Configuration of fragments at time stepst520 @panel~a!#, 40 ~b!, 50 ~c!, and 60~d!. Reconstructed symmetrized distribution
nucleons for time step 40 (b8).
046214-6



ng

rl

on
h

h
e
ag

rg
o

w

as
It
fro

an

th

free
rms
, so

n of
The

on-

d
gra-
ve

u-
nd

at

ch
the
s to
se
of

s
we
tral

axi-

2
wing
s
n

wo
e

m
i-
-

DYNAMICS OF MANY-PARTICLE FRAGMENTATION IN . . . PHYSICAL REVIEW E67, 046214 ~2003!
along the collision line; smaller fragments were blown alo
the y and z axes normal to the collision line (x axis!. The
collision site remains a high density zone, which is clea
visible on the later frames~b!–~d! (t540, 50, and 60!. An
evaporation of small fragments and individual particles c
tinues from this central condensation zone, at a rate whic
expected to depend on the impact energy,Eimp ~the only free
parameter of our series of experiments!.

The experiment seems to suggest that the collision p
nomenon is actually a two-stage process. In the first phas
the collision, the nucleus is broken up into several large fr
ments; the latter are larger, the higher the impact energy
for a high enough impact energy, only two fragments eme
from the collision ~negligible interaction between the tw
nuclei!. The second phase, starting at some time stepto , is a
more gentle evaporation from a central fragment.

To quantify the phenomenon of emission of clusters
fix a small reference volume~a cube of 213 cells! which
encloses the compound nucleus, and which we regard
rough approximation to the space occupied by the latter.
then reasonable to assume that the rate of particle loss
this reference volume is proportional to somea priori un-
known powerd of an excess number of particles over
equilibrium numberAo in the reference volume, or

d/dtAC52b~Eimp!~AC2Ao!d, b~Eimp!5gEimp
1/2
•••.

~7!

The functional form ofb(Eimp) follows from a dimensional
scaling argument. In our series of experiments in which

FIG. 3. Time dependence of size of central cluster:„@AC(t)
2Ao#/@AC(0)2Ao#…k, k50.5, 0.4, 0.3, 0.2, 0.1~thin curves!, and
„ln@AC(t)2Ao#…/„ln@AC(0)2Ao#… against time~heavy curve!. Impact
energy: 3.75 MeV per nucleon!.
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impact energy alone is regarded as a parameter, all other
coefficients being held fixed, we can express mass in te
of the nucleon mass, and volume in the reference volume
that mass and volume~and hence length! become dimension-
less; in this system the impact energy has the dimensio
an inverse time squared. Hence, the above relationship.
remaining factorg depends on the model constants~i.e., ref-
erence volume, mass of nucleons, nuclear interaction c
stants, etc!.

Integration of Eq.~7!, from the momentto , at which
evaporation starts, to the current timet, yields

@AC~ t !2Ao#12d5@AC~ to!2Ao#12d2~12d!~ t

2to!Eimp
1/2g

if dÞ1, ~7a!

AC~ t !2Ao5@AC~ to!2Ao#exp@2Eimp
1/2g~ t2to!#

if d51. ~7b!

Figure 3 shows the curves@AC(t)2Ao#k/@AC(to)2Ao#k for
values ofk (512d) ranging from 0.1 to 0.5~fine lines!, as
well as ln@AC(t)2Ao#/ln@AC(t)2Ao# ~heavy line!; time is mea-
sured withto taken as origin. The parametersto andAo are
read-off from the numerical run (to511; Ao536 in the case
of the experiment exhibited in Fig. 3!. The curves in Fig. 3,
which are strongly nonlinear for larger values ofk, tend to
become linear in the limitk→0, as is found from a linear
regression analysis~over the 25 time steps shown!. Hence,
Eq. ~7b! (d51) gives the best fit. In other words, the excite
compound cluster essentially suffers a standard disinte
tion. The decay time for the specific experiment, we ha
displayed istdis56.58.

~ii ! A second conspicuous feature of the plot of our n
merical results is an artifact of the CA lattice symmetry a
computational procedure. In each lattice direction,6ei , i
5x,y,z, we observe a column of particles or clusters th
propagate all with maximum speedv @Eq. ~1!# away from
the collision site.

Figure 2 discloses that the density of particles in ea
column increases with distance, with a peak density at
two ends of each column. The peak density correspond
the effect of the violent breakup occurring in the first pha
of the collision. The subsequent gentle decrease in time
the content of the residual compound clusterAC(t) implies
that the rate of evaporation@Eq. ~7!# decreases with time a
well. Therefore, the density in the columns decreases as
approach the central compound cluster; at the latter cen
cluster, the common center of the columns, a density m
mum survives.

Statistically the particle distribution at any timet pre-
serves the symmetry of the initial configuration. Figure
demonstrates indeed that the pattern possesses the follo
symmetry elements: Thex axis is a fourfold axis; the plane
(x,y) and (x,z), as well as their bisectors are reflectio
planes; they andz axes are binary axes, and so are the t
diagonal axes; (y,z) is a reflection plane. The invarianc
group of this statistical configuration isD4h ~in standard no-
tations for the point groups; cf. Landau-Lifshits, quantu
mechanics!. The distribution of the particles along the coll
sion axisx is clearly seen to be different from the distribu
4-7
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LEJEUNE, PERDANG, AND RICHERT PHYSICAL REVIEW E67, 046214 ~2003!
tions along they or z axes,~cf., in particular, the large frag
ments on thex axis!. The collision axis remains a privilege
direction all over the experiment.

At time stept50, the initial conditions of the collision
setup in our CA lattice environment, Fig. 1, create a symm
try breaking from the original octahedral~plus translational!
symmetry of the empty~infinite! lattice ~the ‘‘vacuum
state’’!, Oh , to the symmetryD4h of our initial configura-
tion. At all later times,t.0, our CA results demonstrate th
the latter symmetry is statistically preserved~cf. Fig. 2!. The
collision process itself, starting att51, induces no overal
geometric symmetry transition. The occurrence of suc
transition would be direct evidence for a second-order ph
transition. If a second-order phase transition does occu
the fragmentation process, then it must be related to a fi
symmetry breaking not immediately manifest in the spa
distribution of the fragments.

The initial conditions for a head-on collision of two iden
tical nuclei occurring in the continuous physical configu
tion space break the symmetry of the original ‘‘vacuum
~spherical plus translational symmetry! transforming it into a
cylindrical symmetry, of axis coinciding with the collisio
axis Kh→D`h . Provided that our discrete CA model ca
capture the essential physics of the real fragmenta
mechanism, the results of the above numerical experim
are indicative that the full cylindrical symmetry should b
preserved in the real laboratory experiment. This symme
is indeed consistent with the 4p detector measurements.

Our next task is an attempt at wiping out the CA artifa
~ii ! in the computed spatial distribution and to convert t
latter into a form more directly comparable with the labo
tory experiments.

We reconstruct aD`h-symmetric number distribution
r rec(r ;t), from the CAD4h-symmetric number distribution
rCA(r ,t), by the following procedure. We expand the ne
distribution in Legendre polynomials

r rec~r ;t !5 (
n50

`

rn~r ;t !Pn~cosu!, ~8!

where the angleu is the angle between the position vectorr
and the collision axis~oriented from theI to theT nucleus!.
Since the CA experiments indicate that the difference in
distribution along the collision axis and the axes normal
the collision axis is relatively small, we truncate the expa
sion after the dipole terms. In this lowest order approxim
tion, we then write

rrec~r ;t)5rc~r ;t !1h~r ;t !cosu . . . . ~8a!

The functionsrc(r ;t) andh(r ;t) are then determined from
the CA distribution by

rc~r ;t !5B^rCA~r ;t !&y,z ,

rc~r ;t !1h~r ;t !5B^rCA~0,r ,0;t !&x , ~8b!

where the right hand sides are averages over the posi
r 5uyu and uzu on they andz axes, andr 5uxu on thex axis,
respectively;B is a normalization constant which is fixed b
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FIG. 4. Cluster distribution lnN–ln a derived from simulated

4p detectors,~a! Eimp /A50.307 MeV per nucleon,t52.56; ~b!
Eimp /A53.973 MeV per nucleon,t52.64. The numbers of clus
ters are normalized to the numbers of runs.
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DYNAMICS OF MANY-PARTICLE FRAGMENTATION IN . . . PHYSICAL REVIEW E67, 046214 ~2003!
requiring that the integration of the distribution over t
available space@the sum ofr rec(r ;t) over all CA cellsr ] is
equal to the total number of nucleons (5300 in our experi-
ments!.

Panel (b8) of Fig. 2 shows a stereoscopic plot of the sym
metrized space distribution~8! reconstructed from the CA
distribution displayed in panel~b!. The plot is generated by
straightforward Monte Carlo procedure distributing 300 p
ticles in conformity with the statistical law~8a!. We observe
that this distribution falls off with distancer from the center
~with an exponent,2), except that the higher density of th
distribution front survives. We should point out that th
method just redistributes the individual particles witho
conserving the clusters.

~iii ! The cluster-size distribution as generated by our
dynamics and registered by our countersx1, etc., obeys a
power law. This result is illustrated in greater detail in Fig.
which exhibits two instances, one at very low impact ene
Eimp /A50.307 MeV@panel~a!#, and the other at a 13 time
higher energyEimp /A53.973 MeV @panel ~b!#. The plot
shows~a nonnormalized form of! relation~6! in log-log for-
mat, obtained from a total number of runsr 516. Over the
rangea,10, both curves appear as straight lines, with ne
tive slopest52.56~low energy! and 2.64~high energy!. Our
experiments indicate that this property holds at least up
Eimp /A'10 MeV, wheret takes the value 2.65. We ar
entitled to conclude that in the range of impact energ
Eimp /A,10 MeV, the ~smaller! fragments obey a powe
law with negative slopet'2.6, which is independent of th
energy. As the impact energy increases larger clusters
being formed; the tail of the distribution then tends to b
come longer.

Critical exponentst of 2.64 and 2.65 have been measur
in the laboratory, for the fragment distribution of proton-K
and proton-Xe fragmentation. We should mention also tha
the field of ion cluster fragmentation, fragment distributio
obeying power laws of exponents of 2.56 and 2.63@3# have
been isolated.

It appears that the slope values of the fragment distri
tion, we obtain from our dynamic results are in better agr
ment with the laboratory data than the values derived fr
standard statistical theories, which are close to the va
given by mean field theory~ @12#: t52.33). This remains
also true for ion cluster fragmentation problems, even tho
our model parameters were not adjusted to that partic
situation.

VI. FORMAL TEMPERATURES: COMPARISON
WITH LABORATORY EXPERIMENTS

With the exception of the symmetrized distribution~8!,
the results described in the preceding section are direc
sults of ourN-body simulations. They involve no extra ap
proximations besides the assumptions inherent in any
modelization~space and time discretization! and the schema
tization of the interaction potential among particles. In p
ticular, the dynamic calculations dispense with the hypo
esis of formation of a compound cluster in the collisi
process. Our numerical experiments indicate that a confi
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ration showing a higher central concentration, which we
fer to as the compound cluster, always emerges in the si
lation ~Fig. 2!, provided only that the collision energy is low
enough as compared to the binding energy of the nucleon
the nuclei. The compound cluster~i.e., high central concen
tration! survives over a period of time which can be es
mated from Eqs.~7!.

Within this compound cluster, and, in principle, als
within our CA universeU (1273 cells; toroidal topology!, a
variety of statistical equilibriae, e8, e9, . . . are conceivable
among the different components.

~a! If we identify the components as the individual pa
ticles ~nucleons in our specific nuclear fragmentation sim
lation; etc! of a configurationZ, then we may have a statis
tical equilibrium in Z, eE

n(Z), due to energy exchangeE
among the particlesn(Z) of configurationZ. The configura-
tion Z may be the compound clusterC, or our entire CA
universeU.

~b! If we identify the components as the clusters of p
ticlesc ~which in turn, when evaporating from the compoun
cluster become the observable fragments!, then we may have
~i! a statistical equilibrium due to energy exchange amo
the clusters of a configurationZ, c(Z), eE

c(Z). But we may
also have~ii ! an equilibrium due to exchange of energy
well as particlesP among these clusters,eE,P

c(Z). Under the
latter alternative, the observed distribution of fragme
against size will be the thermal reaction-equilibrium dist
bution of the clusters. For the sake of completeness, we m
tion further ~iii ! that within each individual clustercf , the
component particles may exchange energy among e
other; this process may then lead to a special type of e
librium eE

n(cf ) inside each clustercf .
We define here a temperature parameterT(e), which is

associated with a specific thermodynamic equilibrium p
cesse, as follows : The parameterT(e) is the thermody-
namic temperature that reproduces the macroscopic pro
ties of the specific equilibriume assuming it is realized. If
v5F(e;T) is the thermodynamic relation that expresses
observablev as a function of the thermodynamic temper
ture T under equilibrium conditionse ~other thermodynamic
variables being held fixed!, then from the measurement ofv
and the thermodynamic relation, we setT(e)[T. ~Note that
our way of introducing temperatures differs from the mo
formal procedure adopted in Chernomeretzet al. @29#!. We
are free to use this thermodynamic relation in a formal w
to determine a parameterT(e) characterizing a given mac
roscopic configuration, whether or not the specific equil
rium e holds. We begin with listing the thermodynamic rel
tions of relevance for our purposes.

In principle, all of the above-listed equilibria,e, e8, e9,
. . . may arise in our numerical experiments, or in the lab
ratory experiments~in the sense that there is, for instance,
membrane surrounding a fragment that would prevent
exchange of particles, etc.!. The question is rather: Given a
equilibrium processe, does the collision system we invest
gate survive over a time span that is long enough for
equilibrium e to establish itself?

If the collision system reaches a full thermodynamic eq
librium, then we must have
4-9
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LEJEUNE, PERDANG, AND RICHERT PHYSICAL REVIEW E67, 046214 ~2003!
T~e!5T~e8!5•••[T, ~9!

where the formal temperaturesT(e), . . . , obtained as indi-
cated; all of these formal parameters are then equal;
define the single thermodynamic temperatureT. Conversely,
if relation ~9! is violated, then the relevant statistical equili
ria are not realized. We have indeed good reasons to be
that some of the possible equilibria listed above will nev
materialize in our system~cf. below!; or, alternatively, some
equilibria cannot establish themselves over certain range
the impact energy. Our numerical results confirm this po

Even if a state of full thermal equilibrium is not attaine
for the system we are investigating, the formal temperatu
T(e), T(e8), . . . , mayremain perfectly useful paramete
for the purposes of comparison of the numerical results w
actual laboratory experiments in the following sense. S
pose a given observableV, measured in the laboratory,
plotted against the temperature parameterT(e) V
5Q„T(e)…, this temperature being measured according t
well-defined protocol~cf above!. A typical instance is pro-
vided by the~formal! caloric curve,T(eE,P

c(C)) vs Eimp ,
~equilibrium process: energy and particle exchange am
clusters in the compound cluster!. The necessary conditio
for a given theoretical model, such as our present CA mo
to be an adequate model for the fragmentation proces
then that this model can duplicate the experimentalV
5Q„T(e)… relation. The agreement must hold provided th
the formal parameterT(e) be obtained in conformity with
the experimental protocol. It should be kept in mind th
there is no guarantee that an easily measurable temper
parameter of our CA gas@such asT(eE

n(U)) can be substi-
tuted to the actual experimental parameter~temperature as
sociated with ratio yieldsT(eE,P

c(C))].
We have measured the following collection of tempe

ture parameters for our CA system~adapted to nuclear frag
mentation!.

A. Nucleon-gas temperatures: Global nucleon-gas temperature
Tn„U…

„t… and nucleon-gas temperature in compound
nucleusTn„C…

„t…

The temperature parametersTn(U)(t) andTn(C)(t) are the
formal temperatures of a gas of nucleons in thermal equ
rium under exchange of energy in the CA universeU and in
the compound nucleusC, respectively. With the above nota
tions Tn(U)(t)[T(eE

n(U);t), Tn(C)(t)[T(eE
n(C);t); the ex-

tra argumentt indicates that these parameters depend
time.

The total number of nucleons of our system, the CA u
verseU, is conserved,AU(t)[A (5300). The number of
nucleons in the compound nucleusC at time stept, AC(t), is
variable, and so are the number of nucleons in motion in
universe,Am(U)(t), and the number of nucleons in motion
the compound nucleus,Am(C)(t). The temperature param
eters, which are measure of the average kinetic energy
nucleon of the gas of nucleons inU andC, respectively, are
then given in terms of these numbers of nucleons by
following expressions:
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2
k Tn(U)~ t !5

1

2 A
m(

a51

A

@va~ t !#25
Am(U)~ t !

A
K,K,

~10!

3

2
k Tn(C)~ t !5

1

2 AC~ t !
m (

a51

AC(t)

@va~ t !#25
Am(C)~ t !

AC~ t !
K,K,

~11!

In these expressionsk is the Boltzmann constant,va(t) is
the velocity of the nucleon labeleda and taken at time step
t, andK is the kinetic energy of a moving CA particle@Eq.
~3!#. Note that all formal temperature parameters we sh
introduce are time dependent.

The second temperature parameterTn(C) @Eq. ~11!# mea-
sures the physically meaningful average kinetic energy o
gas of particles in the compound cluster, which can, in pr
ciple, reach a thermal equilibrium in our CA model, or in th
laboratory; hence, it can represent a genuine temperature
gas of nucleons. This is the case if the energy exchan
among the nucleons have time to establish themselves, i.

FIG. 5. Formal CA caloric curves,T-Eimp /A, for different defi-
nitions of temperature:~a! Tn(C) , nucleon gas in compound
nucleus; (a8) Tn(U) , nucleon gas in CA universe;~b! Tc(C) , cluster
gas in compound nucleus; (b8) Tc(U) , cluster gas in CA universe
~c! T13/22, reaction equilibriumC(1)1C(3)52C(2); (c8) T3/12,
reaction equilibrium C(3)5C(1)1C(2); (c9) T2/11, reaction
equilibrium C(2)52C(1). Individual points: experimental esti
mates from Au-Au fragments~d! NuPECC interpretation of data
~full squares!; Trautmann interpretation@~e! full dots#, @~f! crossed
squares#, @~g! double crosses#.
4-10
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DYNAMICS OF MANY-PARTICLE FRAGMENTATION IN . . . PHYSICAL REVIEW E67, 046214 ~2003!
the lifetime of the central condensation@cf. Eqs.~7!# exceeds
the average collision time among nucleons inC ~a few time
steps!.

Figure 5 shows a caloric curveTn(C) against the impac
energy per nucleonEimp /A with Tn(C)[Tn(C)(t re f) com-
puted from our CA runs at a reference time stept re f (517
for reasons to be discussed below!. In the low-energy range
up to Ec /A'7 –8 MeV/nucleon, the temperature parame
rises slowly with impact energy, approximately as

Tn(C)50.15Eimp /A, Eimp,Ec . ~11a!

In the high-energy range the rise is steeper, and we appr

Tn(C)5
2

3
~Eimp2Ec!/A, Eimp@Ec . ~11b!

The slope 2/3 in the latter relation is indicative that the ra
dom kinetic energy of the nucleons is asymptotically equa
the impact energy minusEc . Accordingly, this critical en-
ergy appears as a binding energy of the nucleons in the c
pound nucleus. The numerical value ofEc /A, which is of the
order of the average binding energy per nucleon in a sta
nucleus, is indeed consistent with this interpretation.

As can be seen in Fig. 5, the slope of the asympto
expression~11b! is in line with the high-energy branch of th
experimental caloric curve of the197Au-197Au fragmentation
process@14#. The NuPECC caloric curve exhibits a platea
at a temperature level of 4.5–5.0 MeV, which is not rep
duced by the CA nucleon-gas temperature; however,
change of slope in the theoretical curve coincides with
transition from a plateau to a rising behavior. We sho
stress that the experimental points of Trautmann’s analy
also plotted in Fig. 5, indicate no proper plateau; they rat
follow a rising curve similar to the CATn(C) curve. Quanti-
tatively, the experimental data~NuPECC or Trautmann! are
shifted byDT'3.5 Mev above the CA curve.

The first parameterTn(U)(t) must be regarded as an ar
ficial temperature. It measures an average kinetic energ
nucleons composing a mixture of two gases, which in
context of our CA model, or the real laboratory experimen
never interact. Namely, we have on the one hand a ga
nucleons essentially trapped inside the compound nucleuC
and on the other hand an expanding gas outside the c
pound nucleusU-C. In the latter gas the collisions are ne
ligible; no energy exchange can take place among the o
nucleons. All of these latter nucleons conserve the mom
tum and kinetic energy~maximum energyK) they have ac-
quired at the moment they evaporate fromC. To simulate
realistic laboratory nuclear fragmentation, our CA expe
ments must consist in relatively short runs, of a total num
of time stepstmax essentially chosen as follows~cf. Sec. IV!.
Once a fragment has left the collision site it suffers no f
ther interactions. In the finite CA universe of our model th
requires that an ejected fragment be not allowed to be
flected on the boundaries of the cubic CA universe, and s
back to the reaction site. Very roughly, we then choosetmax
,L/2. ~Interactions inU-C would require that the number o
time steps obeytmax@L).
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Even thoughTn(U)(t) has a formal meaning only in th
nuclear fragmentation problem, it can be used to find
physically significant temperature parameter of the co
pound nucleusTn(C)(t). In fact, in the numerical experi
ments we can easily computeTn(U)(t); we can also easily
count the outer nucleons,AU2C(t). Taking then account of
the relations

A5AC~ t !1AU2C~ t ! and Am(U)~ t !5Am(C)~ t !1AU2C~ t !,

we obtain from Eqs.~10! and ~11!

Tn(C)~ t !5Tn(U)~ t !2S 2

3

K

k
2Tn(U)~ t ! D AU2C~ t !

A2AU2C~ t !
. . . .

~12!

This relation demonstrates that the temperature paramet
the compound nucleus at time stept, Tn(C)(t), is always less
than the formal temperature parameter of the CA unive
Tn(U)(t), taken at the same time stept. Figure 5 exhibits also
the formal caloric curveTn(U)(t) vs Eimp /A, at time stept
5t re f (517), which is seen to obey the inequalityTn(U)(t)
.Tn(C)(t). In the lower-energy range the two curve
Tn(U)(t) andTn(C)(t) are nearly superposed, indicating th
at the reference time few nucleons have escaped the c
pound nucleus. Even at the highest impact energies we h
investigated, the difference in the two formal temperatu
does not exceed 1.5 MeV.

B. Cluster-gas temperaturesTc„U…
„t… and Tc„C…

„t…

At time stept consider the specificf th fragmentation clus-
ter cf , f 51,2, . . . , FZ(t), a representative of the cluste
equivalence classC(af). FZ denotes the total number o
clusters in the configuration (U or C). Denote bŷ vf(t)& the
velocity of this cluster~average of the velocities of the com
ponent nucleons! at stept. Then, the cluster-gas temperatu
is the temperature parameter associated with the equilibr
brought about by the exchange of energy among the clus
in a given configurationZ. We haveTc(Z)(t)[T(eE

c(Z);t),
Z5(U,C). Hence,

3

2
k Tc(Z)~ t !5

1

2 FZ~ t !
m (

f 51

FZ(t)

af@^vf~ t !&#2. ~13!

As in the case of the nucleon-gas, the cluster-gas temp
ture parameterTc(U)(t) is again a formal magnitude, sinc
the cluster-gas outside the compound nucleus does not i
act within our runs oftmax time steps. On the other hand, th
clusters in the compound nucleusC may have time to ther-
malize, so that the temperature parameterTc(C)(t) does rep-
resent a physically meaningful temperature.

On Fig. 5, we have superposed the formal theoretical
loric curvesTc(U)(t) andTc(C)(t) vs impact energyEimp /A
~at time stept re f). We note that the inequality between th
two temperature parameters of the nucleon gas inU andC,
read-off from Eq.~12!, is preserved in the case of the clust
gas inU andC : Tc(U)(t).Tc(C)(t) ~outer fragments move
with maximum speed!. The cluster-gas curves have muc
4-11
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LEJEUNE, PERDANG, AND RICHERT PHYSICAL REVIEW E67, 046214 ~2003!
steeper slopes than the nucleon-gas curves, implying the
ther inequalityTc(C)(t).Tn(C)(t).

The higher cluster-gas temperature reflects the follow
property. In a given configurationZ the number of clusters is
smaller than the number of nucleons, while the total ene
to be shared among clusters or among nucleons is the s
Therefore, the average energy per cluster is larger than
average energy per nucleon. At high impact energ
Eimp /A. average binding energy per nucleon in a sta
nucleus, one might expect intuitively that the physica
meaningful caloric curve for a fragmentation process sho
be the nucleon-gas curveTn(C) . The high energy available
when shared among the nucleons, would indeed produce
erage energies per nucleon which exceed the binding e
gies of any fragment. However, our CA experiments dem
strate that in the case of high impact energy the mergeT
and I nuclei break immediately up into essentially sev
large fragments. Two compact fragments carrying a siza
fraction of the mass of theI andT nuclei, continue to propa
gate along the collision axis. Four smaller fragments
ejected along they and z axes, respectively. The residu
nucleons form a concentration of matter at the center. O
the latter can play the part of a compound nucleus in wh
actual energy sharing may occur. Qualitatively this init
breakup survives at lower energies, except that the
ejected fragments become progressively smaller, while
central residual becomes larger as the impact energy is
creased~cf. the sequence shown in Fig. 2 for an impact e
ergy 3.75 MeV per nucleon, where the seven fragments
clearly distinguishable on all panels!.

The observed scenario is indicative that at high imp
energies it is the cluster-gas temperature that supplies
physically meaningful characterization of the laboratory
loric curve. This temperature takes properly care of the c
tribution of the large fragments in the energy balance. A
laboratory measurement technique,~and any theoretical pro
cedure! of a temperature assignment ignoring the larg
clusters must fail to provide a physically relevant tempe
ture estimate.

This point is of importance in connection with the rea
tion temperatures. The latter, to the extent that they typic
refer to fragments of low size~cf. below!, are not physically
representative in the high-energy range.

C. Reaction temperaturesTcc8 . . . Õc9 . . . „t…

The favored laboratory method for assigning an exp
mental temperature to a fragmenting nuclear system con
in measuring ratios of yields of different fragments, assu
ing a statistical equilibrium of general typeeE,P

c(C) among
the fragments@23#. Examples are the ratios (3He/4He) and
(6Li/ 7Li) for the earlier analysis of the ALADIN experi
ments@13,22,23#, and other ratios of populations of isotop
in the more recent analysis of the same experiment@14#; ~cf.
also Refs.@24,25#!. In Ref. @26# the ratios (3He/4He)/(d/t)
and (3He/4He)/(6Li/ 7Li) are considered for the multifrag
mentation resulting from an Au target bombarded by C io
Several other instances of measured ratios are listed in
@1#. In all cases, populations of light nuclei alone have be
04621
r-

g

y
e.

he
s,
e

ld

v-
er-
-

le

e

ly
h
l
ix
e
e-
-
re

t
he
-
-

y

t
-

ly

i-
sts
-

.
ef.
n

investigated, from which a specific temperature paramete
derived via the standard relation for chemical equilibria~cf.
Ref. @27#; the specific nuclear context is dealt within Re
@28#!.

In the framework of our CA formulation which ignore
electric charge, the chemical equilibria among different fra
ments are not directly comparable with the real nuclear eq
libria investigated, which involve isotopes. Under conditio
of true thermal equilibria, the ratio among any group of is
topes, or of isobars, is governed by the same thermodyna
temperature. But if the system is not in a genuine state
equilibrium under nucleon exchange, then the tempera
parameter is specific for the precise reaction process. Dif
ent reactions, and hence different measured ratios of f
ments in the CA experiments, lead to different temperat
parameters. The same conclusion holds for the labora
ratio measurements.

In fact, as transpires from Ref.@14#, different experimen-
tal ratios, and different analyses of these ratios, have le
different shapes of the caloric curve in the case of
197Au-197Au fragmentation process. In Trautmann@14# a ris-
ing pattern for the He-Li ratio is identified, while a near
constant temperature is found for other ratios; moreover,
earlier NuPECC caloric curve@14#, based on other ratios
exhibits a temperature-plateau~not present in Trautmann!,
approximately over the range 3–10 MeV per nucleon. In F
5, we have superposed the various available experime
points defining caloric curves for the symmetric197Au-197Au
fragmentation. This laboratory process comes close to
CA simulation, even though the total number of nucleo
involved in the laboratory is 4/3 times the number of nuc
ons of our simulation.

To formulate the relevant statistical expressions for re
tion equilibria in the CA context, consider the equilibriu
among the cluster classesC(af), C(af 8), . . . , described by
the stoichiometric scheme

n fC~af !1n f 8C~af 8!1•••
n f 9C~af 9!1•••, ~14!

(n f , n f 8 , . . . , integers consistent with conservation of th
number of nucleons in the reaction process:n faf1n f 8af 81
•••5n f 9af 91•••)

Denoted byN(af ,t), the total number of clusters of clas
C(af) present in our system at time stept. If a statistical
equilibrium holds, then the standard statistical procedure
lows us to write

N~af ,t !5
V@2pmkT~ t !#3/2

h3 3
af

3/2

af !

3S (
j 51

J

gjexp@2Eint, j /kT~ t !# D 3exp~ln faf !.

~15!

In this expressionV denotes the reaction volume;T(t) is the
equilibrium temperature at time stept. The summation ex-
tends over theJ internal energy statesEint, j of the J distinct
geometric configurations of the same cluster classC(af) ~as
defined in the Appendix!. Physically, these energies simula
4-12
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different excitation states of a nuclear fragment of m
numberaj . The factorgj is the statistical weight of the en
ergy stateEint, j .

To compute the parameters referring to the internal sta
we construct the different geometrically different clus
classes denotedG(af ,cf ;g) in the Appendix. We then
evaluate the corresponding energiesE(af ,cf ;g) and the re-
lated multiplicitiesg(af ,cf ;g). The full details are given in
the Appendix. The factorl is the Lagrange multiplier tha
takes account of conservation of nucleons. The factorh3 is
the ‘‘volume’’ of an elementary phase-space cell. In the st
classical context of statistical mechanics the elementary
is not defined; a quasiclassical argument identifiesh with
Planck’s constant@29#. In the CA context, we have a natur
phase-space cell, inherited from the discretized space
discretized velocity, or momentum space; the volume of t
cell is (Dl3m3v)3 which is to be substituted toh3.

We rewrite Eq.~15! in the form ~15a!

N~af ,t !5Q„T~ t !,V…3s~af !3Zint„af ,T~ t !…3exp~ln faf !.

The first factor of the right hand side,Q„T(t),V… is essen-
tially the translational partition function of the clusters
classC(af) @normalized toaf51; the actual mass contribu
tion af

3/2 is included in the second factors(af)]. The trans-
lation contribution is evaluated in the standard context
classical mechanics, for reasons of algebraic simplicity~the
discrete kinetic energy states of the CA lead to a more c
plicated expression, which should be equivalent to the c
sical expression in the largeaf limit !. This factor is the same
for all species of clusters. The second factors(af)
5af

1/2/(af21)! is a combination of the mass effect in th
kinetic energy contribution, and the effect of the indisce
ability of the nucleons~invariance under permutation of a
en
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nucleons of the cluster!. The third factor is essentially the
internal partition function of the cluster classC(af), which
we evaluate in the specific CA framework.

For the purposes of estimating reaction-equilibrium te
peratures from our numerical experiments, we restrict o
selves to clusters of smallest sizesaf51, 2 and 3. As tran-
spires from the Appendix, the precise enumeration of
cluster geometries becomes already rather involved foraf
53. To deal with higher sizes, we believe that asympto
approximations to the cluster configurations should be c
structed. This has not been done in the present work.

af51. For a cluster made of a single nucleon, we ha
s(1)51, and the internal partition function reduces to

Zint„1,T~ t !…51. ~16!

af52. For a cluster made of two nucleonss(2)5A2; the
internal partition function involves the contributions of th
geometric configurations listed under Eqs.~A3!–~A5!, and
A6.

Zint„2,T~ t !…5
w

2
exp@2Vf /kT~ t !#1

e

2
exp@2Ve /kT~ t !#

1
n

2
exp@2Vv /kT~ t !#11 exp@2Vo /kT~ t !#.

~17!

af53. A cluster of 3 nucleons hass(3)5A3/2. Thegeo-
metric configurations which contribute to the partition fun
tion are listed in the Appendix under Eqs.~A7!–~A9! @first
line of Eq. ~18!#, ~A10!–~A15! ~second and third lines!,
~A16!–~A19! ~fourth and fifth lines!, ~A20!–~A22! ~sixth
line!, and~A23! ~last line!:
Zint„3,T~ t !…5
w

2
exp@22Vf /kT~ t !#1

e

2
exp@22Ve /kT~ t !#1

n

2
exp@22Vv /kT~ t !#1~w2/22w!exp@2~2Vf1Ve!/kT~ t !#

1~e2/62e!exp@22Ve /kT~ t !#1e2/6 exp@22Ve /kT~ t !#1e2/6 exp@2~2Ve1Vv!/kT~ t !#

1e exp@22Vv /kT~ t !#12w exp@22Vv /kT~ t !#1
we

3
exp@2~Vf1Ve!/kT~ t !#

1
we

3
exp@2~Vf1Ve1Vv!/kT~ t !#1

wn

2
exp@2~Vf1Vv!/kT~ t !#1

3we

4
exp@2~Ve1Vv!/kT~ t !#

1w exp@2~2Vf1Vo!/kT~ t !#1e exp@2~2Ve1Vo!/kT~ t !#1n exp@2~2Vv1Vo!/kT~ t !#

11 exp@23~Vo1DV!/kT~ t !# . . . . ~18!
t N~3,t !

N~2,t !N~1,t !
5

A3

2A2
3

1

Q„T~ t !,V…
3

Zint„3,T~ t !…

Zint„2,T~ t !…
,

~20a!
The following ratios of cluster numbers are independ
of the Lagrange parameterl:

N~3,t !N~1,t !

N~2,t !2 5A3

4
3

Zint„3,T~ t !…

Zint„2,T~ t !…2
, ~19!
4-13
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LEJEUNE, PERDANG, AND RICHERT PHYSICAL REVIEW E67, 046214 ~2003!
N~2,t !

N~1,t !2 5A23
1

Q~T~ t !,V!
3Zint„2,T~ t !…. ~20b!

The first ratio is independent of the translational termQ ~and
hence independent of the reaction volumeV). The numbers
of clustersN(af ,t), af51, 2, 3 are directly supplied by ou
CA runs, at every time stept, so that the left hand sides o
Eqs. ~19!, ~20a!, and ~20b! are known. These equations a
then solved with respect to the parameterT(t) @written
T13/22(t), T3/12(t), T2/11(t), respectively, under the above a
ternatives#. These temperature parameters are the reac
temperatures of the equilibrium processes

C~1!1C~3!
2C~2!, C~3!
C~1!1C~2!,

C~2!
2C~1!,

respectively.
In order to follow as closely as possible the actual lab

ratory experiment, consider the cumulated number of c
ters of sizeaf , M (af ,t), which have passed the collection
detectors up to time stept. The relevant time step is ident
fied with the length of our run,tmax'70 steps. With our
detectors situated at a finite distancedD ('50) from the
reaction center, the first clusters arriving at the detec
were emitted from the collision sitedD2RC time steps prior
to the arrival time (RC , radius of the initial mergedT1I
configuration,'10 in our setup!. Accordingly, in a run of 70
steps the first fragments have time to be reflected on
boundary of our CA universe. The actual choice oftmax se-
cures that the clusters cannot reach the detectors after re
tion; thereby the clusters arriving close to the detectors c
not undergo any interactions with other clusters.

On the other hand, the last fragments registered by
detectors, at steptmax have left the central nucleus roughly
step tmax2(dD2RC) ('30). Accordingly, the cumulated
number readings of the detectors, terminating at time s
tmax(570), M (af ,tmax), cover the first 30 time steps of th
fragmentation mechanism. Alternatively, the cumulated nu
ber may be interpreted as the average number of cluste
sizeaf actually present in our system at the ‘‘average’’ tim
1/2@ tmax2(dD2RC)#[t re f , of the order of 15:

N~af ,t re f![M ~af ,tmax!. ~21!

In our numerical simulations, we have set this reference t
t re f equal to 17.

The three formal caloric curvesT13/22(t) –Eimp /A,
T3/12(t) –Eimp /A, andT2/11(t) –Eimp /A for t5t re f , are plot-
ted in Fig. 5. All three curves are seen to be essentially
dependent of the energy over the rangeE/A,25 MeV inves-
tigated

T13/22'T3/21'T2/11'122 MeV.

Qualitatively this behavior is in line with the different forma
temperatures derived from the laboratory Au-Au fragmen
tion as analyzed in Trautmann@14# ~with the exception of the
He-Li isotope temperature!. Quantitatively, the constant tem
perature level as found in the laboratory experiments lies
04621
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Mev. The experimental temperature is thus shifted byDT
'3.5–4 Mev with respect to the CA temperature,

TLab5TCA1DT. ~22!

In the case of the nucleon-gas temperature, we have not
a shift of a similar order between the theoretical CA tempe
ture and the laboratory estimate.

The temperature defectDT between the CA and experi
mental temperature is thought to be due to a feature inhe
to our CA treatment. The construction of a stable nucleus
the CA framework relies on a discretized version of classi
mechanics, in which the component nucleons possess n
netic energy at all~in the reference system attached with t
center of mass of the nucleus!. Since classically temperature
are related to microscopic kinetic energies, an undere
mated kinetic energy leads to underestimating the temp
ture as well. The reaction temperatures encoded in relat
~19!, ~20a!, and~20b! refer to small-size fragments only. Ac
cording to our remarks on the cluster-gas temperature, th
temperatures are not thought to be representative for the
collection of fragments at high energies (Eimp /A
.8 MeV). However, in the low-energy domain the ava
able energy can concentrate on small-size fragments, w
then form and dissolve easily; therefore, the latter fragm
distribution does reflect a physically meaningful temperat
at lower energies. The full physically significant temperatu
run with energy~caloric curve! from 0 to about 25 MeV is
suggested, therefore, to be made of the cluster tempera
Tc(C) at the high-energy end, and the reaction temperatu
(T2/11, etc! at the low-energy end, with a continuous tran
tion from one curve to the other around the critical ener
Ec /A'7 –8 MeV/nucleon, of the order of the average bin
ing energy.

VII. CONCLUSION

The primary aim of the proposed CA simulation has be
to devise a framework capable of replicating the actual la
ratory procedure of monitoring a fragmentation process g
erated in cluster collisions. Previous theoretical work, inv
tigating thermodynamic properties of the collection
fragments~e.g., a caloric curve!, was implicitly based on an
assumption of a thermodynamic equilibrium. In the pres
model no equilibrium hypothesis is needed. Statistical re
tions @Eqs. ~10! and ~11!; ~13!; ~19!, ~20a!, and ~20b!# are
used formally, for the purpose of making comparisons w
the laboratory experiments.

Our numerical experiments demonstrate that the distri
tion of the CA clusters against cluster size, as registered b
collection of detectors surrounding the collision site, obey
power law of exponentt close to 2.6. This model result is i
excellent agreement with the laboratory results of nuclea
well as other multifragmentation processes. It is well kno
that the very existence of a power law can be derived in
context of various statistical models~cf. the review@1#!. The
statistical assumptions of these theoretical approaches,
the related counting procedure, do not respect, however,
real laboratory protocol. It should then not come as a surp
4-14
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DYNAMICS OF MANY-PARTICLE FRAGMENTATION IN . . . PHYSICAL REVIEW E67, 046214 ~2003!
that the theoretically derived slope of the~equilibrium! dis-
tribution is found to be significantly different from the ex
perimentally measured slope of the~far from equilibrium!
distribution ~2.3 against the experimental value 2.6!.

Secondly, the CA experiments are indicative that the
tion of a compound cluster, which would support a meani
ful thermodynamic treatment, is of limited value in the fra
mentation problem. We observe that typically during t
earliest phases of the collision process the combinedT1I is
fractured into a few large fragments. The latter tend to
quire all the available mass when the impact energy beco
large enough; in the latter limit,Eimp@ binding energy, two
fragments survive. The targetT then becomes transparent
the incident clusterI. Significant energy sharing is found t
occur in the range of low impact energies.

Thirdly, our CA model experiments demonstrate that
original spatial symmetry of the collision setup is statistica
preserved during the whole fragmentation mechanism~Fig.
2!.

Finally, a major goal of our paper was to construct form
caloric curves,TCA–Eimp /A, based on a variety of forma
temperature parameters directly derived from the CA exp
ments, and defined and discussed in this paper for cluste
particles of arbitrary nature. In the nuclear fragmentat
setup, comparison of our CA caloric curves~temperature pa-
rameter chosen at a selected time stept re f), with the labora-
tory caloric curves,TLab–Eimp , derived from the Au-Au col-
lision experiments in the case of different methods
measurement of a temperatureTLab, calls for several com-
ments.

With none of the formal temperatures introduced we c
reproduce the qualitative shape of the full NuPECC calo
curve @14#. The theoretical treatment does not reveal a tr
sition from a rising behavior to a plateau, and again from
plateau to a rising branch. Full CA caloric curves either
duce to a plateau@case of the reaction temperatures, E
~19!, ~20a!, and ~20b!#; or else the curves are rising ever
where @nucleon gas, Eqs.~10! and ~11!; cluster gas, Eq.
~13!#. The formal CA temperatures are qualitatively more
line with the Trautmann analysis of the experimental Au-A
Experimental reaction temperatures are found to be inde
dent of the excitation energy per nucleon; this behavio
duplicated for our three CA reaction temperatures. The la
ratory He-Li temperature parameter exhibits a rising beh
ior, reminiscent of the rising pattern of the temperatures
the nucleon gas and the cluster gas. The slope of the l
experimental curve, of'0.27 ~in the energy range 0–1
MeV!, compares favorably with the average slope of
cluster gas, of 0.3, in the energy range,7.5 MeV. Quanti-
tatively, the CA temperatures are typically too low as co
pared to the laboratory measurements of the temperature
rameters, by an amountDT of nearly 4 MeV@Eq. ~22!#. We
have traced this effect to the treatment of the dynamics of
nucleons in a context of classical mechanics; in this fram
work the residual quantum-mechanical zero-point kinetic
ergy is disregarded. We believe that this effect may acco
for a defect in the theoretical temperatures. An extension
the model taking account of quantum-mechanical effects
eventually be needed to handle the energy problem
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equately~cf. Ref. @30# for an attempt at implementing quan
tum mechanics in the CA framework!.

In the specific nuclear multifragmentation case we ha
analyzed, besides the absence of quantum corrections
model ignores any charge-related effects, so that the deta
theoretical results cannot be compared directly with the
tailed experimental measurements. All laboratory clus
identifications rely on counts of isotopes~rather than isobars
as done in our approach!. We hope to be able to includ
electrostatic effects at a later stage. We also plan to ext
the model to handle asymmetric collisions (AIÞAT) and col-
lisions involving a nonzero impact parameter.

The CA model as developed in this paper remains ma
festly a highly schematic representation of an actual phys
fragmentation problem of any nature, and as such it can o
replicate, and hence also isolate, properties which are lar
insensitive to the microscopic details of the physics. O
numerical experiments suggest that the power law of
fragments, and on a quantitative level, the exponent of
latter, belong into this category of invariant properties.
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APPENDIX: ENUMERATION OF CLUSTER
CONFIGURATIONS

1. Clusters, cluster equivalence classes, and cluster geometrie

We introduce a definition of a cluster of sizea that rests
on the notion of interaction neighborhoodNint(r ) @19#. If r
labels an arbitrary cell, then any cellr 8 distinct from r and
contained in the interaction neighborhood of cellr , Nint(r ),
is termed ‘‘adjacent’’ to cellr . The notion of adjacency is
naturally extended to an arbitrary set of cells,S: A cell r 8 is
adjacent to the set of cellsS if ~i! r 8¹S; and ~ii ! there is a
cell rPS such thatr 8PNint(r ). The collection of all cells
adjacent toS is the outer boundary ofS, ]S.

Define a ‘‘walk’’ in the CA, of headro and tail r f ,
w(ro ,r f), as an ordered collection of cell
(ro ,r1 , . . . ,r f 21 ,r f), such that for any pair of successiv
cells (r j ,r j 11) we have (r j 11) PNint(r j ) ~cf. Ref. @31# for
the graph-theoretical details!. Define further a ‘‘connected se
of cells,’’ Q, in the lattice space of the CA as a set of ce
$ra ,rb , . . . %, such that for any pair of cells of the se
rn ,rmPQ, there exists a walkw(rn ,rm)PQ ~all cells of the
walk lie in the connected set!.

We understand by a ‘‘cluster rooted at particlea, ’’ F@a#,
the connected set of cells such that~i! particlea is located in
one cell of the set;~ii ! each cell of the set is nonempty~it
contains at least one particle!; and~iii ! the outer boundary of
the connected set,]F@a#, is empty.
4-15



n

er
r
s

he

e
e

ha
ge

ne

e
el
g
r
r-

p
t
th
n

un

w

bu
e
-
tr
th
om
-
te
.
tr
m
t

for

ls,

d

eom-

re-
ap-

ym-

try,

us-

lus-

the

-

ion
aic

e

of
ver-
ter

we
ich
tary
s

ll

sla-

first

cell

-

LEJEUNE, PERDANG, AND RICHERT PHYSICAL REVIEW E67, 046214 ~2003!
A cluster rooted at particleb, F@b#, is identical with the
cluster rooted at particlea, F@a#, F@b# [ F@a#, if particle
b occupies a cell of the connected set of cellsF@a#. Accord-
ingly, we can talk about ‘‘clusterF,’’ without reference to a
root particle. A ‘‘cluster,’’ or ‘‘fragmentation cluster,’’F, is a
connected set of nonempty cells, which has an empty bou
ary.

We distinguish the fragmentation clusters occurring in
CA experiment by an argumentf, writing F( f ) to refer to the
f th fragmentation cluster in a given CA context~at a given
time stept). Any collection of clustersF( i ), F( j ), . . . , con-
taining the same number of particles, regarded as indisc
ible, ai5aj5•••[af , belongs into the same ‘‘cluste
equivalence class’’C(af). It is the cluster equivalence clas
C(af) which we regard as the CA counterpart of t
‘‘nuclear fragment’’ of mass numberA5af in the nuclear
fragmentation laboratory experiment.

A pair of clustersF( i ), F( j ), of same cluster equivalenc
class, in which the cells are joined according to a same g
metric rule, and such that each cluster of the collection
same binding energy, will be said to have same ‘‘cluster
ometry’’ G. The collection of all clusters~of same cluster
equivalence class! which have same cluster geometry defi
the ‘‘cluster-geometric equivalence class’’G.

Two clustersF( i ), F( j ) of same cluster geometryG are
said to be ‘‘geometrically equal’’ if after translation along th
lattice axes, and permutation of the particles among the c
they can be superposed exactly. Otherwise, the two confi
rations are geometrically unequal or distinct. The numbeg
of geometrically distinct configurations of a cluste
geometric equivalence classG is the ‘‘multiplicity’’ of the
cluster geometry.

The reason for assigning a special status to clusters su
posable under translations is that the statistical treatmen
Sec. V deals separately with the translational motions of
fragments, the effect on the reaction equilibrium of the e
ergy attached to these motions being described by the f
tion Q(T,V) @Eq. ~15a!# ~a translational partition function!.
The evaluation of the internal partition functionZint , which
concerns us here, involves those configurations which
have referred to as ‘‘geometrically distinct.’’

2. Construction of cluster geometries

Essentially, the notion of cluster geometry enables us
group together clusters which are geometrically distinct,
which become superposable after application of certain g
metric transformation groups~the discrete lattice symme
tries!. It is manifest that clusters of same cluster geome
have generically same binding energies. Conversely, if
interaction energies are generic, then different cluster ge
etries realize different binding energies~accidental degenera
cies may occur as a result of a nongeneric interaction po
tial!. For the purpose of the statistical mechanics of Sec
‘‘energy equivalence classes’’ rather than cluster-geome
equivalence classes have to be isolated. The above com
indicates that the two questions are essentially equivalen~or
closely related in the case of degeneracies!.
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We have the following natural construction procedure
a cluster geometryG(a,c;g), which we specify~i! by the
number of particlesa in the cluster;~ii ! the number of cellsc
of the cluster;~iii ! the precise mode of assembling the cel
and the precise distribution of thea particles among thec
cells, which we symbolize by the descriptive parameterg.

~1! Assemble thec different cells according to the selecte
construction ruleg to form a connected set.

~2! Distribute thea (>c) particles among thec cells; this
procedure generates one representative of the cluster g
etry G(a,c;g).

~3! To find the multiplicityg(a,c;g) of the cluster geom-
etry, generate all geometrically distinct configurations rep
sentative of the same cluster geometry; this is done by
plying the symmetry operations of the lattice~barring
translations along the axes, as well as those geometric s
metries which are equivalent to particle permutations!. The
binding energy of a representative of this cluster geome
naturally denoted byE(a,c;g), is obtained by applying the
rules of Sec. II.

The totality of cluster-geometries corresponding to a cl
ter C(a) is finally generated by repeating steps~1!, ~2!, and
~3! for all allowed choices of cells,c5a, a21, . . . , 1, and
all possible geometrical assemblages of the cells into c
ters.

For af51, there is only one cluster equivalence class;
binding energy is zero. For anyaf.1 the cluster equivalence
class of a specied clusterC(af) contains several cluster ge
ometriesG(af ,cf ;g), which are energetically distinct.

In order to carry out the construction and characterizat
of the cluster geometries it is helpful to resort to an algebr
notation for the parameterg.

~1! If cf51 no construction is involved; we then writ
g[B.

~2! If cf52 there are three distinct modes of contact
the two cubic cells, generated by facewise, edgewise, or
texwise joining of the cells; these modes specify the clus
geometry completely. We writeg[f ~face joining!; or g
[e ~edge joining!; or g[v ~vertex joining!, respectively.

Since for instance face joiningf is not a geometrically
unambiguously defined operation in the CA lattice space,
introduce more elementary construction symbols wh
specify unique and independent operations; the elemen
~and in this specific case irreducible! independent operation
are the joinings along the lattice axes:x axis,fx ; y axis,fy ;
andz axis,fz . ~We can join the second cell to the first ce
in the positive or in the negativex direction; however, the
two resulting configurations are superposable under tran
tions along thex axis; they count as geometrically equal!.

These construction symbols can be combined by a
operation, of addition (1)

fx1fy1fz5f,

the sign (1) is read ‘or’: face joining is face joining along
the x axis, or along they axis, or along thez axis, and this
exhausts the possible alternatives. Denote the number of
faces in thex direction bywx , etc.; we then havewx(5wy
5wz)5w/3(52). The multiplicity of the geometric configu
4-16
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ration generated byfx is 1 (5wx/2, the division by 2 being
due to the geometrical equivalence of the joining along
‘‘positive’’ or ‘‘negative’’ face!. The multiplicity of the
geometric-cluster classG(2,2;f) is then the sum of the mul
tiplicities of the component elementary geometric-clus
classesG(2,2;fx), etc. This property of additivity of multi-
plicities is an instance of the following obvious property.

If a general construction procedureg is the sum (1) of
independent elementary construction procedures,g1 ,
g2 , . . . , then the multiplicity of the cluster geometry is th
sum of the multiplicities of the corresponding elementa
cluster geometries:

g5g11g21•••1gn :g~a,c;g!

5g~a,c;g1!1g~a,c;g2!1•••1g~a,c;gn!. ~A1!

A similar breakup of the operation of edge joininge holds,
e5ex1ey1ez ; whereex is the more elementary~though not
irreducible! operation of joining two cells along an edge pa
allel to thex axis. We have, with obvious notationsex(5ey
5ez)5e/3(54) different edges parallel to thex axis, and, as
in the case of face joining, half of these edges (5ex/2) pro-
duce geometrically distinct configurations~the joining along
opposite edges with respect to the center of the cube ge
ates geometrically equal configurations; the joining alo
edges belonging to a same face produces geometrically
tinct configurations!.

Similar considerations hold for vertex joining.
~3! If cf53, first form a two-cell cluster, joining two cell

as under~2!; the third cell is then attached to the two-ce
cluster. A sequence of two joining operations is indica
algebraically by a multiplication sign (•) between these op
erations. For instance, the combined operationey•ex symbol-
izes the construction of three-cell clusters, a pair of ce
being joined along anx edge; the attachment of the third ce
is along ay edge. Through addition and multiplication o
elementary construction operations more complex const
tion schemes can be generated.

For cf53, we have six main combinations of joining
(f•f, e•e, v•v, f•e, e•v, v•f); each main combination
gives rise to directional variants which are described in te
of the elementary operations (fx , etc.!. As an instance, take
the facewise joining of all three cells, the common fac
being parallel; this operation is symbolized byfx•fx
1fy•fy1fz•fz .

In the construction of cluster geometries, we have to t
account very often of special clauses in the combination
the elementary operations. For instance, among the diffe
edge joinings of three cells, consider the joining alongx
edges combined with the joining alongy edges, (ey•ex),
under the extra constraint that both edges have no verte
common. Such extra clauses are symbolized by approp
subscripts to the construction symbol. In our illustration t
absence of a common vertex is indicated by the subsc
2v, so that the construction symbol becomes (ey•ex)2v . In
a similar fashion the symbol (ey•ex)1v points out that the
two edges are required to have a common vertex~subsript
1v). We have
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ey•ex5~ey•ex!2v1~ey•ex!1v .

~This notation is consistent with the symbols for the elem
tary operations: infx the subscriptx indicates a constraint to
the general face-joining operationf.)

The trivial cluster equivalence classC(1) contains a
single-cluster geometryG(1,1;B) ~single nonempty cell!.
The corresponding binding energy is zero,

G~1,1;B !:E~1,1;B !50, g~1,1;B !51. ~A2!

3. Cluster equivalence classC„2…

The cluster equivalence classC(2) is ~a! either a collec-
tion of c52 adjacent cells containing one particle each;~b!
or it is a single cell,c51, containing both particles.

~a! Under the first alternative, we have all three modes
joining the two cells,G(2,2;j ), j 5f, e, or v.

~i! Common face: geometryG(2,2;f). Multiplicity :

g~2,2;f!5g~2,2;fx!1g~2,2;fy!1g~2,2;fy!.

Sinceg(2,2;fx)5wx/2 ~cf. above!, we have

G~2,2;f!:E~2,2;f!5Vf , g~2,2;f!5
w

2
53. ~A3!

~ii ! Common edge: geometryG(2,2;e). Proceeding as un
der ~i! ~with substitution f→e and w→e), we have
g(2,2;ex)5ex/2, and hence,

G~2,2;e!:E~2,2;e!5Ve , g~2,2;e!5
e

2
56. ~A4!

~iii ! Common vertex: geometryG(2,2;v). In ~i! substitute
f → v andw → n, and consider vertices lying on the ma
diagonals of the cubic cell; take acount that the joining
opposite directions along a diagonal generates geometric
equal configurations. Therefore,

G~2,2;v !:E~2,2;v !5Vv , g~2,2;v !5
n

2
54. ~A5!

~b! The second alternative is trivial

G~2,1;B !:E~2,1;B !5Vo , g~2,1;B !51. ~A6!

4. Cluster equivalence classC„3…

This classC(3) gives rise to three broad categories
geometrical clusters~a! G(3,3;g), ~b! G(3,2;g), and ~c!
G(3,1;B).

~a! CategoryG(3,3;g) contains a first variety of three
geometries of typeG(3,3;j • j ), obtained by attaching one
cell to each of the three geometriesG(2,2;j ), ( j designates
an operationf, or e, or v, as underC(2); if the first joining
is a face joining, then so is the second; etc.!; this variety of
geometrical clusters is constrained to form three align
cells.

~i! Pair of common opposite faces: geometryG„3,3;
(f•f)2e… ~three cells aligned along a lattice axis!; subscript
4-17
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2e indicates that the two faces of the cubic cell have
common edge; hence they are parallel.

The construction procedure is explicited as followsf
•f)2e5fx•fx1fy•fy1fz•fz ; hence the multiplicity
from Eq. ~A1!:

G„3,3;~f•f!2e…:E„3,3;~f•f!2e…52Vf ,

g„3,3;~f•f!2e…5
w

2
53. ~A7!

~ii ! Pair of diametrically opposite common edges: geo
etry G„3,3;(e•e)2f… ~three cells aligned along diagonals
one face!; subscript2f indicates that the two edges of th
cubic cell do not belong to a common face; this implies t
they are symmetric with respect to the cell center.

G„3,3;~e•e!2f…:E„3,3;~e•e!2f…52Ve ,

g„3,3;~e•e!2f…5
e

2
56. ~A8!

~iii ! Pair of diametrically opposite common vertices: g
ometryG„3,3;(v•v)2f… ~three cells aligned along cell diag
onal!; as under~ii ! subscript2f stresses that the two vert
ces do not belong to a common face; hence they
symmetric with respect to the cell center.

G„3,3;~v•v !2f…:E„3,3;~v•v !2f…52Vv ,

g„3,3;~v•v !2f…5
n

2
54. ~A9!

CategoryG(3,3;g) includes a second variety of three g
ometries of typeG(3,3;j • j ), this time under the extra con
straint of nonalignment of the three cells.@The two con-
straints, alignment, and nonalignment of the three ce
joined by a same operationj, manifestly exhaust all alterna
tives of typeG(3,3;j • j )].

(i8) Pair of nonparallel common faces: geome
G„3,3;(f•f)1e… (L-shaped configuration!; subscript 1e
points out that the two faces have a common edge.

Start with a central cube and add a pair of cubes hav
faces in common with the central cube; there arew(w
21)/2 different pairs, among whichw/2 pairs belong to al-
ternative~i! already listed. All of these configurations hav
same energy.

G„3,3;~f•f!1e…:E„3,3;~f•f!1e…52Vf1Ve ,

g„3,3;~f•f!1e…5
w2

2
2w512. ~A10!

(ii 8) The case of nondiametrically opposite comm
edges gives rise to three geometry classes.

~1! Parallel joining edges: The construction scheme is

~e•e!1f5~ex•ex!1f1~ey•ey!1f1~ez•ez!1f ,
04621
o

-

t

-

re

s,

g

where the subscript1f signifies that the two parallel edge
belong to a same face of the cube. The multiplicity of (ex

•ex)1f is @cf. (i8)] ex
2/22ex with ex5e/3. From Eq.~A1!,

we obtain the total multiplicity.

G„3,3;~e•e!1f…:E„3,3;~e•e!1f…52Ve ,

g„3,3;~e•e!1f…5
e2

6
2e512. ~A11!

~2! The two joining edges are distinct,e, e8 ~mutually
orthogonal!, and have no common vertex~subscript2v);
~alternatively, we may say that the two edges do not belo
to the same face!. Hence, the construction scheme is

~e•e8!2v5~ex•ey!2v1~ey•ez!2v1~ez•ex!2v .

The multiplicity of (ex•ey)2v is @cf. (i8)] exey/2. Hence,

G„3,3;~e•e8!2v…:E„3,3;~e•e8!2v…52Ve ,

g„3,3;~e•e8!2v…5
e2

6
524. ~A12!

~3! The two joining edges are distinct~mutually orthogo-
nal!, and do have a common vertex~subscript1v) ~or they
do belong to a same face!. Under this alternative each ce
shares an edge with each of its two neighboring cells. T
construction scheme is

~e•e8!1v5~ex•ey!1v1~ey•ez!1v1~ez•ex!1v .

The multiplicity of the geometry generated by (ex•ey)1v is
as under~2!, namely,exey/2.

G„3,3;~e•e8!1v…:E„3,3;~e•e8!1v…52Ve1Vv ,

g„3,3;~e•e8!1v…5
e2

6
524. ~A13!

(iii 8) Pair of nondiametrically opposite common vertice
These configurations fall into two geometry classes.

~1! Two vertices lying on same edge: geomet
G„3,3;(v•v)1e… ~subscript1e indicating that the vertices
are joined by a common edge!. We decompose this construc
tion scheme as follows:

~v•v !1e5~v•v !1ex
1~v•v !1ey

1~v•v !1ez
,

with the notation (v•v)1ex
indicating that the two vertices

are constrained to lie on anex edge, etc. The multiplicity of
(v•v)1ex

is ex53.

G„3,3;~v•v !1e…:E„3,3;~v•v !1e…52Vv ,

g„3,3;~v•v !1e…5e512. ~A14!

~2! Two vertices belonging to different edges of same fa
@vertices belonging to different faces are diametrically opp
site and have been dealt with, under~iii !, Eq. ~A9!#. It is
convenient to describe this alternatively by saying that th
vertices belong to the same diagonald of a face~constraint
indicated by subscript1d): G„3,3;(v•v)1d…. If we denote
4-18
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by dx the collection of the diagonals of the faces normal
the x lattice direction, etc., the relevant construction sche
becomes

~v•v !1d5~v•v !1dx
1~v•v !1dy

1~v•v !1dz
.

Since the multiplicity of (v•v)1dx
is readily seen to be

2wx54, we have

G„3,3;~v•v !1d…:E„3,3;~v•v !1d…52Vv ,

g„3,3;~v•v !1d…52w512. ~A15!

Finally, categoryG(3,3;g) generates a third variety o
three geometries of typeG(3,3;j • j 8), wherej and j 8 are of
different nature~if j stands for face joining,j 8 must be either
edge joining, or vertex joining, etc.!.

~iv! Face and edge joining: geometriesG(3,3;e•f).
These configurations fall into two geometry classes.

~1! Edge joining on ‘‘small side’’ of the face-joined box
G(3,3;eif•f) ~whereeif indicates that the edge is parall
to the facef). Construction scheme

eif•f5ey•fx1ez•fx1ez•fy1ex•fy1ex•fz1ey•fz .

The multiplicity of the geometries resulting fromey•fx is
wxex/2(54), hence,

G~3,3;eif•f!:E~3,3;eif•f!5Vf1Ve ,

g~3,3;eif•f!5
we

3
524. ~A16!

~2! Edge joining on ‘‘long side’’ of the face-joined box
G(3,3;e'f•f) ~wheree'f indicates that the edge is norm
to the facef). Construction scheme

e'f•f5ex•fx1ey•fy1ez•fz .

Since the number of edges of the long side is 2ex , the mul-
tiplicity of fxex is wxex(54).

G~3,3;e'f•f!:E~3,3;e'f•f!5Vf1Ve1Vv ,

g~3,3;e'f•f!5
we

3
524. ~A17!

~v! Face and vertex joining~third cell attached to an oute
free vertex of box!: geometriesG(3,3;v•f). Construction
scheme

v•f5v•fx1v•fy1v•fz .

The multiplicity of v•fx is nwx/2

G~3,3;v•f!:E~3,3;v•f!5Vf1Vv ,

g~3,3;v•f!5
wn

2
524. ~A18!
04621
e
~vi! Edge and vertex joining~two cells joined vertexwise;

third cell attached to an edge not incident to the joini
vertex!: geometriesG(3,3;v•e). Construction scheme: At
tach second cell to a vertex of the first cell@n/2 distinct
alternatives, according toG(2,2;v)]; the third cell is to be
added such that to have a common vertex~but not a common
face! with the two cells; we have 3/4e(59) alternatives on
each of the two cells. Hence, the multiplicity

G~3,3;v•e!:E~3,3;v•e!5Ve1Vv ,

g~3,3;v•e!5
3we

4
572. ~A19!

~b! CategoryG(3,2;g) generates essentially the variety
geometriesG(2,2;g), with one difference. In theG(2,2;g)
case the two cells are equivalent and indistinguishable; in
G(3,2;g) case, one cell contains two particles, while t
other contains only one particle, so that the translatio
symmetries do not hold. The multiplicities are, therefo
twice the multiplicities encountered underG(2,2;g).

~i! Common face: geometryG(3,2;f).

G~3,2;f!:E~3,2;f!52Vf1Vo , g~3,2;f!5w56.
~A20!

~ii ! Common edge: geometryG(3,2;e).

G~3,2;e!:E~3,2;e!52Ve1Vo , g~3,2;e!5e512.
~A21!

~iii ! Common vertex: geometryG(3,2;v).
In ~i! substitutef → v, and consider vertices lying on th

main diagonals; take acount that the joining in opposite
rections along a diagonal produces an equivalent config
tion under combinations of translations. Therefore,

G~3,2;v !:E~3,2;v !52Vv1Vo , g~3,2;v !5n58.
~A22!

~c! The final alternative of all three particles in the sam
cell generates the trivial geometry

G~3,1;B !:E~3,1;B !53Vo13DV, g~3,1;B !51.
~A23!

This completes our list of distinct geometrical configur
tions associated with the cluster classesC(1), C(2), and
C(3).

The systematic construction method of the configuratio
extends naturally to clusters of arbitrary sizea. However,
with increasinga the number of alternatives increases exp
nentially, so that a detailed enumeration becomes rap
prohibitive. This suggests that an asymptotic approach, w
a taken as the ‘‘large’’ parameter, should be substituted to
detailed enumeration procedure of this Appendix. Comm
experience with asymptotic expansions suggests that re
precise enough for the statistical purposes of Sec. V sho
become available even for fairly lowa values.
4-19
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@8# C. Bréchignacet al., J. Chem. Phys.90, 3 ~1989!.
@9# R.W. Minich et al., Phys. Lett.118B, 458 ~1982!.

@10# A.D. Panagiotouet al., Phys. Rev. Lett.52, 496 ~1984!.
@11# A.D. Panagiotou, M.W. Curtin, and D.K. Scott, Phys. Rev.

31, 55 ~1985!.
@12# H. Jaqaman, A. Z Mekjian, and L. Zamick, Phys. Rev. C27,

2782 ~1983!.
@13# J. Pochodzallaet al., Phys. Rev. Lett.75, 1040~1995!.
@14# NuPECC Report, edited by J. Vervier, J. Aysto¨, H. Doubre, S.

Galés, G. Morrison, G. Ricco, D. Schwalm, and G.E. Ko¨rner,
1997 ~unpublished!; W. Trautmann,Advances in Nuclear Dy-
namics, edited by Bauer and Ritter~Plenum Press, New York
1998!, Vol. 4, p. 348 and 349.

@15# N. Bohr and J.A. Wheeler, Phys. Rev.56, 426 ~1939!.
@16# D. Lynden-Bell and R. Wood, Mon. Not. R. Astron. Soc.138,
04621
-

495 ~1968!; W. Thirring, Z. Phys.235, 339 ~1970!.
@17# J. Aichelinet al., Phys. Rev. C37, 2451~1988!.
@18# P. Finocchiaroet al., Nucl. Phys. A600, 236 ~1996!.
@19# A. Lejeune, J. Perdang, and J. Richert, Phys. Rev. E60, 2601

~1999!.
@20# A. Lejeune, J. Perdang, and J. Richert~unpublished!.
@21# A. Strachan and C.O. Dorso, Phys. Rev. C56, 995 ~1997!.
@22# A. Chernomoretz, C.O. Dorso, and J.A. Lo´pez, Phys. Rev. C

64, 044605~2001!.
@23# X. Campi, H. Krivine, and E. Plagnol, Phys. Rev. C50, R2680

~1994!.
@24# J. Pochodzallaet al., Phys. Rev. C35, 1695~1987!.
@25# G.J. Kundeet al., Phys. Lett. B272, 202 ~1991!.
@26# J.A. Haugeret al., Phys. Rev. Lett.77, 235 ~1996!.
@27# L. Landau and A.M. Lifshits,Statistical Physics~Pergamon

Press, London, 1958!; R.H. Fowler, Statistical Mechanics
~Cambridge University Press, Cambridge, 1955!.

@28# A. Bonasera, M. Bruno, C.O. Dorso, and P.F. Mastinu, Nuo
Cimento23, 1 ~2000!.

@29# S. Albergo, S. Costa, E. Constanzo, and A. Rubbino, Nuo
Cimento89, 1 ~1985!.

@30# M.D. Kostin, J. Phys. A26, L209 ~1993!.
@31# F. Harary, Graph Theory~Addison-Wesley, Reading, Mass

1971!; F. Harary and E.M. Palmer,Graphical Enumeration
~Academic Press, New York, 1973!.
4-20


